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ABSTRACT

A survey of temperature, heat-flux, and pressure measurements was obtained at speeds through Mach 8.0

on the second flight of the Pegasus ® air-launched space booster system. All sensors were distributed on

the wing-body fairing or fillet. Sensors included thin foil-gauge thermocouples installed near the surface

within the thermal protection system. Thermocouples were also installed on the surface of nonablating

plugs. The resulting temperature time history allowed derivation of convective heat flux. In addition,

commercially available calorimeters were installed on the fillet at selected locations. Calorimeters exhib-

ited a larger change in measured heat flux than collocated nonablating plugs in response to particular

events. Similar proportional variations in heat flux across different regions of the fillet were detected by
both the calorimeters and nonablating plugs. Pressure ports were installed on some nonablating plugs

to explore the effects of port protrusion and high-frequency noise on pressure measurements. The effect

of port protrusion on static-pressure measurements was found to decrease with increasing Mach number.

High-frequency noise suppression was found to be desirable but not required on any future flight.

NOMENCLATURE

Cp

FS

Heatabl

HRSI

k

L

LTA

M

NASA

P_vF

P_

P1

P2

P3

P4

P5

P6

P7

P8

q

qc

qco,_v

specific heat, Btu lbm I °F -t

fuselage station, in.

heat of ablation, Btu lbm 1

high-temperature reusable surface insulation

thermal conductivity, Btu in t sec-1 OF-1 (or Btu ft -1 hr -1 °F -1 where specified)

length

Lockheed Thermal Analyzer (Lockheed Corporation, Burbank, California)

Mach number

National Aeronautics and Space Administration

modified Newtonian flow estimate of pressure, lb ft 2

free-stream static pressure, lb ft -2

pressure port at location FS = 288.4 and z = 18.25

pressure port at location FS = 288.4 and z = 17.75

pressure port at location FS = 253.1 and z = 18.25

pressure port at location FS = 253.1 and z = 17.75

pressure port at location FS = 253.1 and z = 11.25

pressure port at location FS - 253.1 and z = 10.75

pressure port at location FS = 241.0 and z = 11.25

pressure port at location FS = 241.0 and z = 10.75

heat flux, Btu ft -2 sec-t

dynamic pressure, lb ft -2

free-stream impact pressure, lb ft -2

convective heat flux to the surface, Btu ft -2 sec -1

Pegasus is a registered trademark of Orbital Sciences Corp., Fairfax, Virginia.
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T

Tabl

Tact

TC

TPS

Y

z

reference surface convective heat flux, Btu ft -2 sec -1

time from launch, sec

temperature, °F

ablation temperature, °F

activation temperature, °F

thermocouple

thermal protection system

lateral coordinate measured to the right from vehicle centerline, in.

vertical coordinate measured upward from vehicle thrust line, in.

Subscripts

abl ablation

act activation

inf free stream

Greek symbols

c_

P

0

Ap

Aq

angle of attack, deg

angle of sideslip, deg

density, lbm in -3

flow incidence angle, deg

pressure difference between flush and protruding port, lb ft -2

incremental difference in convective heat flux, Btu ft -2 sec-1

INTRODUCTION

The Pegasus is an air-launched, winged rocket designed to loft small satellites into low Earth orbit.

A wing and conventional tail are included on the first stage of the rocket. The resulting aerodynamic

forces provide lift and control through Mach 8. The Pegasus offers the potential for performing add-

on experiments, which involve installing small research packages that can be incorporated with minimal

impact on the vehicle's primary orbital insertion mission. The Pegasus booster offers the advantage of

being a large-scale vehicle with a large internal volmne in the first stage. An additional 16 lb on the first

stage reduces the orbital payload capability by only about 1 lb. Some disadvantages of the add-on concept

are that the Pegasus vehicle is nonrecoverable, has ablating surfaces, and flies a predetermined trajectory
designed to meet the primary payload requirements.

A series of add-on experiments has been proposed. On flights 1 and 2, the complexity of the experiments

was limited to meet flight schedules. On later flights, more sophisticated experiments are planned to

study phenomena such as crossflow-induced boundary-layer transition (ref. 1). The overall goal of these

experiments is to perform appropriate hypersonic research, given the limitations of the Pegasus vehicle. The

specific research objectives of instrumenting flights 1 and 2 were (1) to develop measurement techniques on

an ablating vehicle, (2) to use these techniques to obtain in-flight temperature measurements for evaluating

analytic design tools, and (3) to obtain empirical information about specific hypersonic flow features of the
configuration.



The instrumentationpackageon the first flight consistedof foil-gaugethermocouples(TCs) andnon-
ablating plugsdistributedon the wing andwing-bodyfairing or fillet (sensordetailsareavailablein the
next section).Heat-fluxtime historiesderivedfrom the nonablatingplugs installedon the fillet revealed
someinterestingaspectsof the local flow field includingevidenceof the wing shockinteractionand flow
angleeffects.Detailsconcerningflight-1instrumentation,installationprocedures,andresultscanbefound
in reference2.

Flight-1 resultsfrom the fillet-mountednonablatingplugswereinterestingenoughto warrantconcen-
trating the flight-2 instrumentationin the fillet area.The flight-2 packagecontainedan arrangementof
nonablatingplugsandfoil-gaugeTCssimilar to that on flight 1. In addition, this packagewasaugmented
with calorimetersand static pressures.The calorimeterswereinstalledto providea heat-flux estimate
from an instrumentwith a coolerwall than the nonablatingplugs,thusbracketinganyestimateof heat
flux to the unmodifiedsurfaceof the fillet. Fourcalorimeterswereplacedin a rowsothat the wingshock
wouldpassovereachin turn yieldinga betterestimateof wingshocklocation.Thelocationof the rowwas
chosenbasedon informationfrom flight 1. The pressureexperimentinvestigatedthe effectof protruding
orificeson static-pressuremeasurementsand evaluatedthe needfor high-frequencymeasurementnoise
suppression.

ThesecondPegasusmissionwasconductedJuly17,1991,about15monthsafterthefirst mission.This
paperpresentsthe resultsof the instrumentationeffort on the secondflight. Temperaturetime histories
fromthe foil-gaugeTCs andheat-fluxtime historiesfromboth nonablatingplugsandcalorimeterswill be
shownanddiscussed.Resultsof the static-pressuresurveywill beshownalso.

The authorsacknowledgethe financialsupportof the DefenseAdvancedResearchProjectsAgency
(DARPA).

TEST APPARATUS

The Pegasus is an air-launched, winged, three-stage solid rocket booster system intended to deliver

payloads of up to 900 lb into low Earth orbit. Figure 1 shows the launch configuration, with a photograph
of the booster mated to the B-52 carrier aircraft. The wing, tail surfaces, and wing-body fillet are all

located on the first stage, as are the research instrumentation components described in this report. The

expendable vehicle was approximately 49.5 ft long with a wing span of 22 ft. Total weight at launch for

the flight-2 vehicle was 42,050 lb.

The wing-body fillet provides an aerodynamic junction between the wing and cylindrical rocket motor

casing that forms the fuselage. The fillet structure is constructed of foam sandwiched between two 0.040-in.

thick layers of graphite epoxy. The impact of sensor installation on the fillet structure will be discussed in

the instrumentation section.

The wing-body fillet thermal protection system (TPS) consisted of an ablator applied over pressed

cork insulation. The ablator, Thermolag T-230 (Thermal Science, Inc., St. Louis, Missouri) is a polymer

substance designed to sublime around 230 °F. Cork was obtained in 0.04-in. thick pressed sheets and glued

in place. Table 1 gives the thermal properties for these materials.

INSTRUMENTATION

Flight-2 instrumentation consisted of 37 channels divided among 20 TCs, 8 calorimeters, and 9 pressure

measurements. Figure 2 shows the sensor distribution on the fillet. Of the 20 TCs, 12 were the foil-gauge

type and were installed between the cork and ablator layers; the remaining 8 were mounted on the surface
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of nonablating plugs. Foil-temperature gauges made it possible to measure temperatures between the

thin layers of thermal protection with minimal perturbation. Standard TCs were installed at the surface

of nonablating plugs which in turn were mounted flush with the surface of the vehicle. The plugs were

fabricated from high-temperature reusable surface insulation (HRSI). HRSI, originally developed for the

space shuttle, offered well-defined material properties and characteristics. Using the temperature time

history at the plug surface, material properties, and geometry, the heat flux at the surface could be
estimated.

Figure 3 shows a foil-gauge TCs installed within the TPS, and figure 4 shows a nonablating plug
With an installation schematic. Details of the installation processes for both the foil-gauge TCs and the

nonablating plugs are given in reference 2. The process for deriving a heat-flux time history from the

temperature measurement on the plug surface is described in the same reference. Table 2 gives plug

material properties.

On flight 2, the nonablating plugs were supplemented by eight commercially available calorimeters.

Some calorimeters were collocated with plugs, and others were arranged in a row (the four sensors at

fuselage station (FS) = 284.5 in fig. 2) to fine tune the estimate of shock position based on information

from flight 1. Three sizes of calorimeters were installed (fig. 5). The two largest geometries (0.65 in. wide

by 0.375 in. deep and 0.65 in. wide by 0.065 in. deep) were installed alongside the nonablating plugs, while

the smallest calorimeters (0.187 in. by 0.375 in.) were used in the row. The calorimeters had original ranges
of 0 to 3 or 5 Btu ft -2 sec -1 but all were deranged to 0 to 2 Btu ft -2 sec -1 to increase resolution.

All three calorimeters shared a common thermopile-type design, which consisted of a thin insulative

wafer bonded to a metallic heat sink. A series of thermoelectric junctions was arranged so that consecutive

junctions lay on opposite sides of the wafer. Heat incident on the face of the sensor was conducted through

the wafer to the heat sink. The resulting differential temperature across the wafer was directly proportional

to heat flux. The output signal can be made larger by increasing the number of thermoelectric junctions.

Some nonablating plugs contained pairs of static pressure ports where one port was flush with the

surface and the other protruded. The protruding port was intended to simulate a static port placed on

a surface that had ablated. The objective of this pressure experiment was to quantify the effect of a

protruding orifice as a function of Mach number. Previous subsonic and low-supersonic research (refs. 3

and 4) has shown that the pressure measured by a protruding orifice is lower than the actual pressure.

Another issue addressed by the pressure experiment was the need for high-frequency measurement

noise suppression. On future Pegasus flights it is expected that digital transducers will measure pressures.

Signal aliasing can be a problem with digital measurement if the sample frequency is too low. In this

experiment analog transducers were used with passive antialiasing filtering on all measurements except one

to determine if there were any regions in the flight where aliasing would cause problems with a digitally

measured signal.

Eight pressure ports were located on the right side of the fillet (fig. 2). Four of the nonablating plugs

each contained two pressure ports. Two of tile plugs included protruding orifices. Figure 6 shows a diagram

of a plug with orifices installed. Pressure port P6 had a 0.05-in. protruding tube and pressure port P8 had

a 0.10-in. protruding tube. The exposed pressure tubing was quartz glass (0.125-in. inside diameter, 0.175-

in. outside diameter) which extended through the plug. Internally, this was connected to high-temperature

silicon tubing (0.156-in. inside diameter) which extended from the glass tubing to the transducer box.

Figure 7 shows a schematic of the pressure measurement system. Differential pressure transducers

measured the surface pressures relative to a reference pressure manifold (volume = 0.75 in3). The reference

pressure was measured by an absolute pressure transducer. The absolute transducer was ranged from 0 to

30 lb in 2 with a measurement accuracy of 0.005 lb in 2 and 20-bit resolution. The differential transducers

were ranged from +1 ]b in s for ports P1 and P2 and from -1.5 to 0.5 ]b in 2 for ports P3 through P8.

4



The measurementaccuracyof the differentialmeasurementswas0.008lb in2 and an8-bit wordwasused
whichgavea resolutionof 0.008lb in2. Combiningtheabsolutemeasurementaccuracyandthedifferential
measurementaccuracygavea laboratorycalibrationroot-mean-squareaccuracyof 0.012lb in2 (1.73lb
ft2).

The transducersalso werecalibratedon the vehiclewith the instrumentationsystempoweredup.
With few exceptions,the calibrationsfell within the 1.73lb ft2 accuracy.On flight day,preflight zeros
wereobtainedto determineanyzeroshiftsin the calibrations. No significantzeroshifts wereexpected
sincethesetransducerswerecalibratedonly 6daysbeforethe flight. However,significantzeroshiftswere
discovered.The zeroshiftsfor ports Pl through P8, respectively,were20.2,18.7,5.9,8.4,10.8,4.3, 6.8,
and 4.8 lb ft2. Theseshifts weresubtractedfrom the flight data. It is alsopossiblethat a slopechange
couldhaveoccurredin the calibration;however,therewasno way to determinethis from the preflight
data.

The absolutepressuretransducerwasa digital sensorwhile the differential pressuresweremeasured
usinganalogtransducers.A passiveantialiasingfilter circuit wasappliedto the differentialpressuremea-
surements(exceptP6). This first-orderfilter wasdesignedto roll off the signalat 10Hz. The transducers
werewrappedin insulatingblanketsto preventrapid temperaturechangesand hencecalibration inac-
curacies.TCs wereusedto monitor the transducertemperaturesthroughoutthe flight. The flight data
showedthat thedifferentialtransducerswerea constant75 °F throughout the flight and that the absolute

transducer was at a constant 42 °F. All transducer calibrations were valid at these temperatures.

Pressure port Pl was connected to the reference pressure manifold as well as to a differential pressure

transducer. This port was chosen to supply the reference pressure since its location on the fillet gave it

a 5 ° incidence to the free stream with no sideslip. Pressure ports P3 through P8 were at 0 ° incidence to

the free stream with no sideslip. At any point in the flight, port Pl (as well as port P2) was expected

to measure the highest pressure on the fillet because of its 5 ° inclination. The pressure at port Pl was

estimated in preflight analysis using Newtonian flow techniques (ref. 5). From the estimated pressures

the required differential transducer ranges were then determined. The 124 in. of tubing from the surface

of port P1 to the reference pressure manifold slightly lagged the reference pressure and damped out any

higher frequency pressure fluctuations.

TRAJECTORY

No onboard airdata measurements were taken on the Pegasus. Free-stream airdata quantities were

estimated postflight by a combination of data from an onboard inertial navigation system, information

from three ground-based radar tracking sites, and atmospheric data from balloons, stratospheric charts,

and climatological information. Reference 2 contained a detailed account of airdata estimation on flight 1,

which by comparison had access to eight ground-based radars.

Figures 8(a) and 8(b) show flight condition parameters from launch to first-stage separation. The

Pegasus began its path to orbit under the right wing of the NASA B-52. Launched from about 42,000 ft,

the Pegasus dropped away from the bomber for approximately 5 sec before the first stage ignited. A 2-g

pullup was then executed, during which the vehicle reached a maximum angle of attack of about 22 °.

Angle of attack was reduced to about 3 ° from about Mach 2.5 to 3.5. Angle of attack was near 0° for the

remainder of first-stage flight. Maximum dynamm pressure was about 820 lb ft 2 and occurred 30 sec after

launch. At that time, altitude was just under 60,000 ft and Mach number was about 2.5. In comparison

to flight 1, the flight-2 vehicle returned to a lower angle of attack (about 3 °) after the initial pitch up.



DISCUSSION OF RESULTS

Foil-Gauge Thermocouples

Figure 9 shows temperature time histories measured by the foil-gauge TCs at the ablator-insulator

interface. Initially, temperatures are around -20 °F and begin to rise about 10 sec after launch. Of the

12 channels, 7 reached the maximum range of 320 °F. Shown in figures 9(a) through 9(e) are temperature

time histories for each row of TCs at various fuselage stations. At each station, TCs closer to the wing

underside experience both higher rise rates and higher ultimate temperatures. The only exceptions are the

TCs at the farthest aft fuselage station (FS = 241.0, fig. 9(e)), with the TC at z -- 8.5. The data from
this sensor before t - 8 sec are unrealistic and inconsistent with other results. They are shown only for

the sake of completeness.

Nonablating Plugs

Figure 10 is a typical temperature time history measured at the surface of a nonablating plug (FS =

288.4, z - 18.0). At launch, the plug surface is about -40 °F and the temperature begins to rise about 6
sec after launch. A maximum of about 575 °F is attained about 59 sec after launch, followed by a sharp

change in slope. The plugs attain a higher surface temperature than the surrounding ablator because

comparatively little heat is conducted into them and no energy is dissipated with ablation products.

Figures 11(a) through ll(f) depict convective heat transfer (qco_, which is equal to the sum of the

radiation and conductive components) time histories derived from the plug surface temperatures using

Lockheed Thermal Analyzer (LTA) program (Lockheed Report 18902, Thermal Analyzer Computer Pro-

9ram for the solution of General Heat Transfer Problems). For details concerning plug heat-flux derivation,

see reference 2. Peak values range from about 1.0 to 1.5 Btu ft -2 sec 1. All maximum values occur between

50 and 60 sec. The absolute value of convective heat flux to the plug surface is lower than the heat flux

to the surrounding TPS because the plug surface temperature is higher and results in a lower difference

between surface and recovery temperatures. As shown below, the heat fluxes measured by the calorime-

ters are much higher than for the nonablating plugs because the metallic construction of the calorimeters

conducts heat away from the surface more readily. The resulting lower wall temperature provides a larger

temperature difference and thus a larger heat flux.

Calorimeters

Based on data from the nonablating plugs flown on flight 1, the calorimeters were ranged to a maximum

of 2 Btu ft 2 sec-1. Unfortunately, because of the comparatively cool wall discussed above and the higher

sustained dynamic pressure trajectory of flight 2, all but one of the calorimeters exceeded their maximum

range. Maximum heat flux ranges varied from channel to channel because of variations in scale factors and

full-scale outputs among the individual sensors.

Figure 12 shows the heat-flux time histories from the calorimeters. All calorimeters experience a

momentary decrease in heat flux between 25 and 30 sec after launch. This coincides with the aircraft pitch

down from c_ = 18 ° and a change in sideslip from ,_ = +7 ° to 0°. This effect is also visible in most of

the nonablating plugs but is not nearly as well defined. The effect seems strongest in sensors ranging from

the upper right to the lower left on the fairing. Comparing the nonablating plug/calorimeter side-by-side

installations at FS = 280.6, z = 11.0 and at FS = 253.1, z = 23.0 (figs. 13(a) and 13(b)), the event between

25 and 30 sec is more pronounced for the calorimeters than for the nonablating plugs. The calorimeters

are more sensitive than the plugs in the sense that a given event elicits a larger change in heat flux.
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Differential Heating

The heat-fiuxdata from the nonablatingplugsandthe calorimetersmay be interpretedwith respect
to the trajectory and sensorlocation. By usingsupersonicwedgetables (ref. 6) for severaltrajectory
flight conditions,an estimatewasmadeof the wingleading-edgeshock-waveposition,superimposedon
thesidewallof the fairing (fig. 14(a)).This estimatedoesnot accountfor offsetscausedby the l-in. wing
leading-edgeradiusor fuselagebow shockeffects.Basedon this estimate,however,the sensorson the
forwardcornerof the fairing, farthestfrom the wing, areexpectedto be upstreamof the wing shockfor
flight conditionsin whichaerodynamicheatingissignificant.Whencompared,heat-fluxtimehistoriesfrom
the twononablatingplugsin this areaagreefavorablythroughoutthe flight profile (fig. 11(a)).Therefore,
anaverageof the data from thesetwosensors(fig. 14(b))will be referredto asthereferenceheating,qref,
and used so normalize data from other nonablating plugs.

Differential heating Aq is defined as

Aq = qconv - qref

and is shown for the remaining nonablating plugs in figure 15. No appreciable additional heating is apparent

for the sensors closest to the lower surface of the wing (figs. 15(a), (b), and (e)) at elevated angle of attack

(t < 30 sec). This differs from results seen on the first flight. The difference may be because the flight-2

vehicle pitched down before it experienced significant aerodynamic heating. Between t = 30 and 60 see,

differential heating in the wing shock region (figs. 15(@, (d), and (f)) climbs to a maximum between 53
and 55 sec. The sensor farthest aft and farthest from the wing (fig. 15(f)) experiences the most severe

differential heating of Aq - 0.6 Btu ft -2 sec -1. At this time, the reference heating, q_._f, is about 0.83 Btu

ft -2 sec 1, thus the sensor depicted in figure 15(f) is experiencing about 1.7 times the reference heating.

Figure 16 shows the calorimeter reference heating, which is the average of the time histories found in

figure 12(e). The sensors that comprise the reference heating are located forward and away from the wing,

as in the case of the nonablating plugs. Calorimeter differential heating, described below, is defined in the

same manner as differential heating on the nonablating plugs.

Figures 17(a) through 17(e) show differential heating data for the calorimeters located away from the

reference region. Differential heating data are not shown when either the sensor or the reference heating

is off scale. Figure 17(a) shows differential heating for the calorimeter at FS - 288.4, z = 23.0. Maximum

observed Aq for this sensor is about 0.9 Btu ft 2 sec-1, or about twice the reference heating and occurs
between 65 and 70 sec after launch. Even higher differential heating of about 1.4 Btu ft -2 sec -1 is observed

for the sensor at FS = 284.5, z = 22.0 (fig. 15(c)). The sensors located just above and below (figs. 17(b)

and 17(d), respectively) each experience a negative differential heating during the same period. This

inconsistency is not understood at this time and will require further investigation. The sensor depicted in

figure 17(e) exhibits differential heating similar to the nearby nonablating plug (fig. 15(b)) from t = 65

see to the end of the first-stage flight. The differential heating analysis for the calorimeters was greatly

hampered by the range limit problem.

Static Pressures

Figure 18 shows time histories of the absolute and differential pressure measurements. Approximately

i6 sec after launch, pressure ports P3 through P8 exceeded the pressure range of the transducers during

an unplanned -11 ° sideslip excursion. About 58 sec after launch (Mach 4.8 and 96,000 ft altitude),

the differential pressure measurements began drifting unexpectedly. The fact that something was wrong

became obvious as adding the differential pressure measurement to the reference pressure caused negative
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absolute pressures for ports P1, P3, P4, and P6. The same type of transducer was subsequently tested

in an altitude chamber at NASA Dryden. This drifting phenomenon was repeated for altitudes greater

than 70,000 ft. It is hypothesized that as the ambient air became less dense, the heat generated within

the transducer was no longer easily dissipated. Consequently, the temperature of tile transducer's sensing

element increased and caused the output to be erroneous for the remainder of the flight.

Orifice Protrusion

In this experiment, pressure port P6 protruded 0.05 in. above the surface and pressure port P8 protruded

0.10 in. above the surface. To determine the protrusion effect, measurements from flush orifices (P5, P7)

were compared to measurements from adjacent protruding orifices (P6 and P8, respectively). Figure 19

shows the error, Ap, normalized by dynamic pressure. At low Mach numbers, the magnitude of the

error is in very good agreement with results from references 3 and 4. As Mach number increased, the

error decreased to about 0.02 at Mach 5. Unfortunately, the information at higher Mach numbers is not

available.

Pressure-Measurement Noise

The effect of high-frequency noise suppression was also studied in the pressure experiment. Figure 18(d)

shows pressure port P5 with noise suppression and pressure port P6 without noise suppression. As shown,

a considerably noisier signal was obtained from port P6. The magnitude of the noise is fairly constant

throughout the flight. In postflight analysis, the measurement from port P6 was run through a 1-Hz low-

pass filter. This induced a 0.225-sec lag on the filtered measurement. Correcting for this lag, the filtered

P6 measurement is compared with the unfiltered measurement in figure 20. Although the unfiltered signal

is noisy, the signal-to-noise ratio is still large enough to obtain an accurate pressure measurement. In this

flight, therefore, there was no region where antialiasing was required to obtain the pressure measurement.

It is possible that aliasing could still be a problem on future flights using different pressure measurement

locations and different pressure-line geometries. However, this experiment showed no evidence of potential

problems.

Comparison With Predictions

A simple prediction can be obtained for the forward facing pressure ports P1 and P2 (FS = 288.9) using

modified Newtonian flow. The plug containing these ports is located on the fillet so that the incidence to

the free stream is 5° at 0 ° sideslip. The modified Newtonian flow estimate for the pressure is

where

PNF = qc cos20 + poo

,/ [' :

/7 i :

• i¸: 8

cos e = (cos ss°)(eos 9)(cos + (sin SS°)(sin 9)

Figure 21 shows a comparison between the measured pressure at port P1 and the Newtonian flow

estimated pressure. As expected, tile solutions converge as Mach number increases (ref. 5).



CONCLUDING REMARKS

Temperature, heat flux, and pressure measurements from the second flight of the Pegasus air-launched

booster were obtained on the ablating surface of the wing-body fillet. Temperature measurements were

obtained within a thin-layered, ablating thermal protection system and on the surface of small nonablating

plugs mounted flush on the fillet. Heat-flux time histories were derived from the plug surface temperature

measurements. Commercially available calorimeters that provide heat-flux time histories were also installed

on the wing-body fillet, in some cases adjacent to a nonablating plug. This data can help to evaluate the

effectiveness of the aerothermal design tools used in developing the Pegasus vehicle and to provide empirical

information related to specific hypersonic flow features of the configuration.

Temperatures measured within the fairing thermal protection system often exceeded the data range

limit of 320 °F. Sensors located near the wing lower surface tended to reach higher temperatures than

sensors at the same fuselage station but farther from the wing. This phenomenon probably resulted from

increased compression in the wing flow field.

Derivations of convective heat flux from the nonablating plugs produced consistent time histories for

those sensors forward of the predicted wing leading edge shock position. The maximum heating rate
measured near the shock was about 1.7 times the value measured ahead of the shock. Data from sensors

aft of the shock were difficult to correlate with changes in angle of attack, because the vehicle pitched down

to minimal angle of attack (< 4 °) before significant aerodynamic heating took place.

All but one of the commercially available calorimeters experienced heat fluxes in excess of the data range

limit (approximately 2 Btu ft -2 sec-1) during significant portions of the flight. This limited the amount of

postflight analysis possible with the calorimeter data when compared with the data from the nonablating

plugs. Comparing collocated calorimeters and nonablating plugs, both showed similar percentage changes

in heat flux caused by a given event.

As with the plugs, the calorimeters located in the region ahead of the wing shock interaction measured

roughly similar heat-flux time histories. Meanwhile, calorimeters in the shock region experienced up to

twice as much heating.

The pressure-measurement experiment showed good results for the flight below Mach 4.8. An in-

teresting instrumentation problem was discovered in the pressure-measurement experiment. As altitude

increased beyond 96,000 ft, it is believed that the differential transducers could no longer dissipate inter-

nally generated heat. This caused the differential transducer measurements to be useless after 96,000 ft.

For future Pegasus missions, it will be necessary to verify with ground tests the performance of pressure

transducers in a high-altitude (low ambient pressure) environment.

The adverse effect of orifice protrusion from the surface was demonstrated at two locations on the fillet.

The adverse effect diminished as Mach number increased. High-frequency noise suppression in the pressure

transducer measurement was determined to be desirable but not required. Consequently, digital pressure

transducers can be used effectively to measure pressures on the Pegasus vehicle.
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Table 1. Properties of TPS materials.

p, k, Cp, Heatabt, Tabt,
Material lbm in -3 Btu in -1 sec -1 °F -1 Btu lbm 1 °F -1 Btu lbm 1 °F Description

Cork 0.0177 0.925 x 10 -6 0.47 n/a n/a Multipurpose insula-
tor. Organic fiber.

Bonded in place.

Thermolag 0.0521 1.85 x 10 -6 0.3 750 230 Low-temperature
ablative material.

Polymer. Spray-on

application.

Table 2. HRSI material properties; HRSI density (LI-2200) = 22 lbm ft -3.

(a) Thermal conductivity (Btu ft -1 hr -1 °F-l).

Pressure,atmosphere

Temperature, °F 10 -5 10 -4 10 -3 10 -2 10 -1 1

-250 0.0133 0.0133 0.0167 0.0267 0.0300 0.0333

-150 0.0150 0.0150 0.0183 0.0283 0.0333 0.0367

75 0.0183 0.0183 0.0233 0.0333 0.0408 0.0467

500 0.0250 0.0250 0.0317 0.0408 0.0558 0.0650

1000 0.0358 0.0358 0.0442 0.0533 0.0783 0.0900

1500 0.0500 0.0500 0.0600 0.0708 0.1058 0.1192

1700 0.0583 0.0583 0.0683 0.0808 0.1192 0.1342
2000 0.0692 0.0692 0.0833 0.0983 0.1417 0.1583

2300 0.0842 0.0842 0.1000 0.1200 0.1658 0.1883

(b) Specific hea_.

Temperature. cp,
°F Btu lb_ 1 °F -1

-250 0.070

-150 0.105

0 0.150

250 0.210

500 0.252

750 0.275

1000 0.288

1250 0.296

1500 0.300

1700 0.302

1750 0.303

3000 0.303
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Figure 17. Concluded.
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{a) Reference pressure.

Figure 18. Pressure-measurement time histories.
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(b) Differential pressures for ports P1 and P2.
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(c) Differential pressures for ports P3 and P4.

Figure 18. Continued.
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(e) Differential pressures for ports P7 and P8.

Figure 18. Concluded.
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Effect of orifice protrusion on pressure measurement.
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Figure 20. Comparison of filtered and unfiltered pressure measurement.
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